Divisors of a module and blow up
نویسندگان
چکیده
منابع مشابه
Ample divisors on the blow up of P at points
In this note we will prove a theorem on divisors on the blow up of P at points which extends a theorem of G. Xu [Xu] on the blow up of P. The central idea of the proof works for any dimension and therefore opens the doors to a generalization of the theorem to higher dimension, once one overcomes certain technical difficulties that arise. Basically we will give a new proof of Xu’s theorem that w...
متن کاملBLOW-UP AND NONGLOBAL SOLUTION FOR A FAMILY OF NONLINEAR HIGHER-ORDER EVOLUTION PROBLEM
In this paper we consider a kind of higher-order evolution equation as^{kt^{k} + ^{k&minus1}u/t^{k&minus1} +• • •+ut &minus{delta}u= f (u, {delta}u,x). For this equation, we investigate nonglobal solution, blow-up in finite time and instantaneous blow-up under some assumption on k, f and initial data. In this paper we employ the Test function method, the eneralized convexity method an...
متن کاملA note on critical point and blow-up rates for singular and degenerate parabolic equations
In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...
متن کاملA hypergraph blow-up lemma
Weobtain a hypergraph generalisation of the graph blow-up lemma proved byKomlós, Sarközy and Szemerédi, showing that hypergraphs with sufficient regularity and no atypical vertices behave as if they were complete for the purpose of embedding bounded degree hypergraphs. © 2011 Wiley Periodicals, Inc. Random Struct. Alg., 39, 275–376, 2011
متن کاملA note on blow-up in parabolic equations with local and localized sources
This note deals with the systems of parabolic equations with local and localized sources involving $n$ components. We obtained the exponent regions, where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data. It is proved that different initial data can lead to different blow-up phenomena even in the same ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 2013
ISSN: 0022-4049
DOI: 10.1016/j.jpaa.2012.12.008